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Abstract—Simulating deformable objects is essential for a
wide range of robotic manipulation applications. Yet, accurately
predicting their dynamics remains challenging. Physics-based
simulations are interpretable, but they require a known model
class and precise identification of physical parameters, which
are often difficult to obtain. Learning-based approaches can be
more expressive in capturing dynamics, but they often general-
ize poorly outside the training distribution, require substantial
training data, and lack physical consistency. We propose Physics-
Guided Residual Dynamics (PReD), a hybrid simulation frame-
work that combines an optimizable spring-mass simulator as a
backbone with a learned neural network that predicts residual
corrections to compensate for discrepancies between physics-
based predictions and reality. Our velocity-based formulation
ensures stable simulation, while a sliding-window transformer
captures temporal dependencies. We validate our approach on
diverse real-world deformable objects, demonstrating that PReD
outperforms both purely physics-based simulators and learning-
based methods. We further demonstrate the practical utility
of our framework in action-conditioned 3D video prediction
using 3D Gaussian Splatting and in Model Predictive Control
for manipulation planning on challenging tasks such as cable
rerouting, where purely physics-based simulation fails.

I. INTRODUCTION

Accurately predicting the dynamics of deformable objects
remains a persistent challenge in robotics and computer vision.
These can deform significantly under external forces, undergo-
ing changes in shape such as stretching, bending, crumpling,
and twisting, often complicated by self-collisions and friction.
The difficulty stems not only from material behaviors such
as heterogeneous elasticity and damping, but also from the
complexity of contact-rich interactions.

To address this challenge of modeling these complex behav-
iors, two dominant paradigms have emerged: physics-based
methods and learning-based approaches. Physics-based meth-
ods use mathematical equations that describe how materials
deform and respond to forces, yielding physically plausible,
interpretable simulations. However, these methods require
precise material parameters that are difficult to obtain in prac-
tice [42, 777, 153]. The complex mathematics of these simulators
typically restricts practitioners to gradient-free optimization
methods [42], which can effectively tune only a handful of
parameters before becoming intractable [77, [86]. Even with
optimal parameters, physics-based models are inherently lim-
ited by their discretization and constitutive modeling assump-
tions. Coarse meshes miss fine-scale deformations [63) 48],
and linear elasticity fails under large strains [69, 49].

On the other hand, learning-based approaches have shown
promise by directly learning from data without requiring
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Fig. 1: Comparison of simulation paradigms for deformable
objects. Physics-based methods (top) are interpretable but limited by
discretization and constitutive modeling assumptions. Learning-based
methods (middle) can capture complex dynamics but often generalize
poorly beyond the training distribution. Physics-Guided Residual
Dynamics (bottom) combines a physics model with a learned neural
network that predicts residual velocity corrections, enabling accurate
and robust simulation.
physics simulations. These methods can capture complex,
arbitrary behaviors that are challenging to model analytically.
However, purely data-driven models suffer from poor gen-
eralization to unseen scenarios [12, 65], require substantial
amounts of training data [79], and often lack the physical
consistency [[12] required for reliable deployment in real-world
applications. Moreover, without the inductive bias provided by
physical priors, these models may learn spurious correlations
that do not reflect the real-world [68]].

We propose Physics-Guided Residual Dynamics (PReD),
a hybrid simulation framework that combines interpretability
and generalization of physics-based models with flexibility
and expressiveness of learning-based approaches. PReD uses
a spring-mass simulator as its physics backbone and follows a
two-stage training procedure: first, we optimize the simulator’s
parameters to match real-world observations; second, we train
a neural network to predict residual corrections that compen-
sate for discrepancies between the physics model and the real
world. Crucially, training residual dynamics models is nontriv-
ial. Directly injecting learned corrections into simulated states
can destabilize the dynamics and cause error accumulation
over time. Instead, we predict residual velocities and integrate
them forward in time, yielding residual position corrections
that respect the underlying dynamical structure. This velocity-
based formulation ensures smooth, stable simulation and en-
ables effective training of the residual model without destabi-
lizing the underlying physics simulation. To model temporal



dependencies, we incorporate a sliding-window transformer
that refines velocity corrections by modeling residuals across
multiple timesteps. This temporal history enables the network
to learn dynamic phenomena, such as momentum, while a
gating mechanism ensures stable training.

PReD offers several advantages. First, the physics backbone
provides priors that improve generalization to new scenarios.
Second, by leveraging a physics backbone, our model requires
significantly less training data than purely learning-based ap-
proaches, as the network only needs to learn corrections rather
than learn to predict the entire dynamics from scratch. Third,
our approach maintains computational efficiency suitable for
real-time applications while achieving higher accuracy than
physics-based methods alone.

We validate our approach on a diverse set of real-world
deformable objects, including rope, paper, plush toys, flag, and
duster. Our experiments demonstrate that PReD significantly
outperforms both purely physics-based methods and purely
learning-based approaches in tracking accuracy across pre-
hensile and non-prehensile manipulation. Notably, only PReD
performs well on the duster, which is a heterogeneous object
with rigid stem and soft feathers. Here, uniform material
assumptions in most physics-based deformable simulators fail
and learning-based methods struggle with the complexity.

By attaching 3D Gaussians to the simulated particles, we
can render photorealistic images and evaluate performance
using both vision-based and geometric metrics. Beyond state
tracking, we demonstrate two practical applications: action-
conditioned 3D video prediction for photorealistic render-
ing, and model predictive control for manipulation planning
on challenging tasks such as cable rerouting, where purely
physics-based simulation fails.

In summary, our contributions are as follows: (1) We
propose Physics-Guided Residual Dynamics, a hybrid simu-
lation framework that combines an optimizable spring-mass
model with learned residual corrections to accurately model
deformable object dynamics. (2) We introduce a two-stage
training procedure that first optimizes physics parameters us-
ing black-box optimization and then trains a neural network to
predict residual corrections. (3) We conduct extensive experi-
ments on diverse real-world deformable objects, demonstrating
that our approach achieves superior performance compared to
existing physics-based and learning-based methods.

II. RELATED WORKS

Physics-Based Simulation for Deformable Objects. Tra-
ditional physics-based simulation methods rely on analyti-
cal models to discretize deformable objects and numerical
solvers to solve equations of motion of the models. For
deformable objects, spring-mass models [4, |41} [37] represent
one of the most intuitive and efficient approaches, where
objects are modeled as networks of point masses intercon-
nected by springs. Consequently, this representation has been
extensively employed to effectively model the dynamics of
diverse deformable objects in both computer graphics and
robotics [4} 141} 37, 184} 142} 183] [30]. Our work leverages the

spring-mass model as a backbone precisely because of its
qualities of efficiency and interpretability. While more com-
plex approaches like Finite Element Methods (FEM) [61] 511,
Position-Based Dynamics (PBD) [52, i47]], and Material Point
Methods (MPM) [62, 29] offer higher physical fidelity, they
often incur high computational costs and complexity.

Despite their physical foundations, these methods require
precise material parameters that are difficult to obtain in prac-
tice. A recent line of work addresses this challenge through
differentiable physics approaches [37, 164} 24} 9L [13] 118 23| 28|,
55 156, 144 140, [16| 130]], which reformulate physics simulators
to be compatible with automatic differentiation frameworks.
These methods enable gradient-based optimization to identify
optimal physics parameters by backpropagating through the
simulation process, solving inverse problems to find material
properties that best match observed data. While this parameter
identification can improve simulation accuracy, it imposes a
strong requirement: the simulator must be fully differentiable.
This constraint is often impractical in contact-rich robotics
tasks where discontinuities from collisions [8), 38 |84], friction
mode transitions [38| 32} 21]], and non-smooth contact geom-
etry [70, (78], 38] lead to exploding or vanishing gradients.
Unlike these approaches, our method does not require the
simulator to be differentiable, enabling broader applicability
to realistic manipulation scenarios.

Learning-Based Simulation for Deformable Objects. This
has emerged as a powerful alternative to traditional physics-
based methods, particularly excelling in scenarios requiring
real-time performance with complex nonlinear dynamics [76,
10, 134} 851 [750 16} 11} 125 111} 151 1450 [73} 74} 43l 26]. These
approaches leverage data-driven models, typically neural net-
works, to learn deformation patterns directly from observation
data, bypassing the need for explicit material parameters or
complex numerical solvers [35, [50].

Graph Neural Networks (GNNs) have become particularly
prominent in this domain due to their natural ability to
represent mesh structures as graphs, where nodes correspond
to vertices and edges represent connectivity. GNNs excel at
capturing long-range interactions and complex dependencies
through message passing [80, 182] 157, 54} 135} 166, 36|, allow-
ing them to effectively simulate internal and external forces
causing deformation [5| [33]. Notably, GBND [82] exploits
this graph structure by establishing a topology over sparse
particles, enabling the GNN to efficiently learn and propagate
the dynamics across the object. However, these methods face
significant challenges: the effectiveness of message passing
is sensitive to graph structure and is vulnerable to partial
observations, while insufficient steps fail to capture global
information and excessive steps cause oversmoothing [67, [3].

Recent advances have explored architectural improvements,
including transformer-based models for handling dense parti-
cle systems [38, [71]], recurrent neural networks for temporal
consistency [46], and attention mechanisms for improved long-
range dependency modeling [57]. These methods have demon-
strated success across diverse materials, including cloth [37,
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Fig. 2: Physics-Guided Residual Dynamics Overview. Given RGBD observations, we extract surface points to instantiate the simulation.
Red dots indicate the point where gripper held the object. The framework rolls out an optimized spring-mass physics backbone from the

current object state X, V; and robot actions a: to produce simulation prediction X;

sim

, Vim_ Subsequently, our residual dynamics network

predicts per particle residual velocities, which are added to the simulator velocities and time integrated to obtain the final positions X¢41, Viy1.

39, 154]), fluids [S7, 135], plasticine [27} 160, 59], and granular
materials [35]]. The current best method is Particle-Grid Neural
Dynamics [81]] (PGND), which combines particle representa-
tions with spatial grids to learn dynamics while maintaining
spatial continuity. These learning-based approaches typically
require substantial training data and may struggle with gen-
eralization to unseen scenarios or material properties that are
significantly different from the training distributions. Our work
addresses these limitations by grounding the neural network in
physical priors, allowing it to focus on learning only residual
corrections rather than the full dynamics from scratch.

Residual Dynamics. Residual learning has been effectively
employed to model the dynamics of robots [[19, 20 [7]. In these
works, the robot’s model is known, and the residuals primarily
reflect simple modeling errors, such as PID gains or backlash.
These discrepancies are easier to capture because they often
manifest as consistent deviations from the nominal model. In
contrast, we model the dynamics of deformable objects, where
the residual must compensate for complex, high-dimensional
phenomena, including nonlinear stiffness, spatially varying
material properties, and contact-rich interactions. The most
closely related work is [2], which models the environment’s
residual dynamics rather than the robot’s. However, it is lim-
ited to low-dimensional toy problems, such as planar pushing,
where the state space is small and the dynamics are relatively
simple. PReD extends this residual paradigm to the high-
dimensional, complex states of deformable objects.

III. METHOD

We propose Physics-Guided Residual Dynamics, which
augments a physics-based dynamics backbone with a learned
neural network. Given RGBD observations, we extract surface
points to instantiate the simulation. Our method overview
is shown in Fig. 2| We first explain our physics backbone,
followed by the neural network.

A. Physics Backbone

We represent deformable objects using a spring-mass model,
wherein the object is discretized into a graph structure consist-
ing of point masses (nodes) interconnected by springs (edges).
Each node i has a position x; € R?® and velocity v; € R3
that evolve over time according to Newtonian mechanics
with a semi-implicit Euler solver. This representation provides
computational efficiency and straightforward implementation
while capturing essential elastic deformation behaviors. To
model manipulation, we apply constraints to particles near
the gripper: for prehensile manipulation, they move rigidly

with the gripper, whereas for non-prehensile manipulation,
the gripper acts as a spherical collision shape that pushes
penetrating particles to its surface.

The fidelity of the spring-mass simulator depends critically
on five physical parameters collectively denoted as 6: 1)
Stiffness, which defines the elastic resistance of springs; 2)
Damping, which controls energy dissipation during motion;
3) Threshold, which determines the maximum distance for
creating springs between nodes; 4) Max springs per node,
which limits the connectivity of each mass point for simulation
stability; and 5) Ground friction, which governs contact inter-
actions with the environment. These parameters collectively
encode the material properties and environmental conditions
that govern the dynamics of the simulated object.

Given a batch of trajectories sampled from the dataset, each
with initial state (X, V) and action sequences A = {a;}7_,,
we roll out the simulator for 7' time steps with actions
{a}L_, under candidate parameters 6 to obtain predicted point
cloud positions {X;}7_,. At each time step ¢, we compute a
pointwise mean squared error between predicted and ground
truth configurations. We average this error over the trajectory
horizon to obtain the optimization objective. We minimize
this objective using Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [22], which is particularly effective for
our problem as it optimizes parameters without requiring
gradients. We use CMA-ES because contacts and collisions
cause sudden changes in forces, preventing reliable gradient
computation in the simulator.

For volumetric objects such as plush toys, modeling only
the surface shell often leads to unrealistic collapse, as the
lack of internal support points causes the object to flatten
under gravity or compression. To address this, we augment the
spring-mass model with internal points that provide structural
volume. Starting from our multi-view observations, we first re-
construct the complete surface point cloud using RaySt3R [14]]
and extract a watertight mesh via marching cubes. We then
uniformly sample particles within this mesh to populate the
interior, ensuring the spring-mass model preserves the object’s
volume and structural integrity during simulation.

B. Residual Dynamics Framework

While our optimized spring-mass backbone provides a phys-
ically grounded baseline, it inherently struggles to capture
complex behaviors such as nonlinear stiffness, non-uniform
contact friction, and heterogeneous material properties. Instead
of attempting to model these intricacies analytically, we intro-
duce a learned residual module that models the discrepancy



between the physics model and reality.

Formally, at each time step ¢ and step size dt, we use
the physics backbone to generate an immediate prediction
(X§im Vsim) We then employ a neural network to predict
a per-particle residual velocity AV/% haged on the cur-
rent simulator state and history. We choose a velocity-based
residual formulation because it ensures smooth integration
and avoids the instability often associated with direct position
corrections. The final velocities are obtained by adding the
learned residuals to the simulator’s predictions:

¥ si sidual
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These corrected velocities are then time-integrated to obtain
the final position updates:

Xt+1 — X;im + A‘/;residua] . dt.

For particles that are rigidly held by grippers, we enforce
a boundary condition by zeroing out their residuals. This
formulation effectively bridges the gap between the optimized
spring-mass model and the observed real-world dynamics.

We train the residual network using a supervised learning
objective. To ensure the model is robust to error accumulation
over long horizons, we employ a multi-step rollout training
scheme. During training, we do not reset the simulator to the
ground truth state at every step. Instead, we feed the hybrid
simulator’s predicted state from time ¢ back as the input for
time ¢+ 1. This exposes the network to its own past predictions,
allowing it to learn how to recover from drift.

C. Network Architecture
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Fig. 3: Network Architecture. The points encoder extracts spa-
tiotemporal features, which the decoder projects to estimate initial
residual velocity. Finally, the temporal aggregator refines these esti-
mates using a recurrent history to output the final residuals Awv.

Our network is show in Fig. 3] To parameterize the residual
velocity, we design a network consisting of three primary
components: encoder, decoder, and temporal aggregator.

Encoder. We employ a Point Transformer V3 (PTv3) [72]
architecture to extract per-particle features. At time step ¢,
we construct input features by concatenating the current state
(X¢, V4), history from previous time steps (X, his 7his) and the
simulator’s immediate predictions (X3™, V™). The encoder
processes these inputs through multiple layers of patch-based
self-attention, where each particle attends to others within its
local neighborhood. We demonstrate experimentally that the
attention mechanism computes position-dependent features for
each particle based on its local geometric configuration.

Decoder. To decode per-particle residuals, we utilize a Neural
Radiance Field (NeRF) style architecture. We apply Fourier
positional encoding to the particle positions and concatenate
the resulting embeddings with the features extracted by the
encoder. These concatenated features are passed through an
MLP decoder to produce an initial velocity correction estimate
AVjrtal - Empirically, we found that including the decoder
improves performance compared with directly using PTv3
outputs as velocity estimates.

Temporal Aggregator. To incorporate dynamics from the
previous predictions, we refine the base predictions using
a sliding-window transformer. At each step ¢, we update a
temporal buffer with the current initial correction AVnitial,
If the buffer contains fewer than W frames, we pad it by
replicating the most recent frame. The sequence is projected
to a latent embedding, augmented with sinusoidal positional
encodings, and processed by the transformer. We extract the
output feature vector h; corresponding to the final time step
and apply two parallel learned projections:

6t = tanh(PrOjé(ht))7 gt = U(Projg(ht))7

where Proj denotes a linear layer, tanh produces a bounded
temporal offset d;, and the sigmoid function o generates gating
weights g;. The final residual velocity is computed as:

Av;tresidual =0.1- [(1 _ gt) ® A‘/tinitial +g;® 5t}>

where ©® denotes element-wise multiplication. This gating
mechanism allows the network to adaptively blend the local
base prediction with the temporally refined correction based
on the transformer’s context.

D. Action-Conditioned Video Prediction

Given an initial observation and a sequence of actions, we
generate realistic future frames showing how the object will
deform. We leverage 3D Gaussian Splatting as the rendering
module. At the initial timestep, we fit Gaussian primitives
to the observed point cloud, where each Gaussian is param-
eterized by its 3D position, covariance, opacity, and color.
As PReD predicts future point cloud configurations given the
action sequence, we update only the Gaussian positions and
covariances, keeping their appearance attributes fixed. This
allows the rendering to maintain visual consistency with the
initial observation while reflecting the predicted deformations.
To render a frame at timestep ¢, we project the updated
Gaussians onto the camera view and alpha-blend them in depth
order to produce the output image.

E. Planning with PReD

PReD can serve as a forward model for model-based
control. Given a state s; and action a;, the model predicts the
next state s;41. Actions specify gripper positions that interact
with the object. We integrate PReD with Model Predictive
Path Integral (MPPI) control [[17)]. At each timestep, MPPI
samples a batch of candidate action sequences {7;}, where
7 = {a},a},,,...,ai y} spans a planning horizon H. For
each sequence, PReD rolls out the dynamics to predict future



states. MPPI then scores trajectories using a task-specific cost
function and updates the action distribution toward lower-cost
regions. Following MPC, we execute only the first action from
the final action and replan at the next time step with the newly
observed states.

IV. EXPERIMENTS

A. Experimental Setup

We experiment with a UFACTORY xArm 7. We evaluate
PReD on six objects shown in Fig.
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Fig. 4: Experiment Objects. We evaluate PReD on a diverse objects.

a) Rope. A mostly one-dimensional object grasped at one
end and manipulated by dragging across the table or
lifting and lowering motions.

b) Paper. A thin two-dimensional sheet grasped at the top
and manipulated by suspending it in the air while per-
forming waving motions, exhibiting bending and twisting.

¢) Plush Toy. A three-dimensional volumetric object with
long, highly flexible limbs that are challenging to model.

d) Duster. A heterogeneous object with a rigid stem and
highly deformable feathers. This is especially challenging
because it requires different dynamics predictions for the
rigid stem compared to the flexible feathers.

e) Flag. A cloth flag, demonstrating large area deformation
dynamics that are challenging to model due to the waving
motion. We chose it because its top stick prevents the
cloth’s surface from collapsing. We model the stick as a
rigid constraint, assuming that all points along the stick
follow the gripper trajectory.

f) Teddy Toy. A volumetric object with higher rigidity than
the plush toy. We deform it by poking rather than holding
it, representing non-prehensile manipulation.

B. Data Collection

We follow the data collection procedure from [81]. Four
Intel RealSense D455 cameras capture synchronized multi-
view observations while manipulating the object. We apply
Grounded SAM 2 for object segmentation and CoTracker [31]]
for 2D trajectory prediction. These 2D trajectories are lifted
to 3D using depth information from all camera views, and
persistent point tracks are extracted through an iterative rollout
approach. Additional details are provided in the appendix.

C. Metrics

We evaluate our method using two categories of metrics:
tracking metrics that measure dynamics prediction accuracy
in 3D space, and visual metrics that assess rendering quality

when combined with 3D Gaussian Splatting for action condi-
tioned video prediction.

Tracking Metrics. These measure dynamics prediction accu-
racy in 3D space. We employ three metrics computed between
predicted and ground truth point clouds:

o Mean Distance Error (MDE) measures the average dis-
tance (in cm) between corresponding points in predicted and
ground truth configurations, providing a direct assessment of
positional accuracy.

o Chamfer Distance (CD) computes the bidirectional nearest
neighbor distance between point clouds, capturing coverage
and precision without requiring point correspondences.

« Earth Mover’s Distance (EMD) quantifies the minimum
cost of transforming one point cloud into another, providing
a holistic measure of distributional similarity.

Visual Metrics. To evaluate rendering quality for action-
conditioned video prediction Sec. |[lI-D| we assess the rendered
images obtained by updating Gaussian positions with our
predicted point clouds. We report three metrics:

o J-Score (IoU) measures intersection over union of predicted
and ground truth masks, quantifying spatial overlap.

o F Score evaluates contour accuracy, determining how well
the boundary of the predicted object mask matches the
boundary of the ground truth.

o Learned Perceptual Image Patch Similarity (LPIPS)
assesses perceptual similarity using features extracted from
predicted and ground truth images, capturing visual differ-
ences closer to human perception.

D. Baselines

We compare PReD against four baselines: two analytical
physics-based simulations and two learning-based approaches.
Spring-Mass Model [30]: This is the same as the physics
backbone we use for our model. Improvements over this base-
line demonstrate that the learned residual model effectively
captures the dynamics missed by the physics simulator alone.
Material Point Method (MPM) [62] : MPM combines Eule-
rian and Lagrangian representations to handle material behav-
iors and topological changes. This hybrid approach discretizes
materials into particles while using a background grid for
computing spatial derivatives and enforcing conservation laws.
MPM is particularly effective for materials exhibiting both
solid and fluid-like behaviors but requires careful parameter
tuning and can be computationally expensive.

Graph Based Neural Dynamics (GBND) [82] : This is
a learned approach that employs Graph Neural Networks
to learn object dynamics directly from data without explicit
material parameters. The object is represented as a graph
where message passing mechanisms propagate information
between nodes to capture long range interactions.
Particle-Grid Neural Dynamics (PGND) [81] : This repre-
sents the state-of-the-art in learning-based methods, employing
a hybrid representation of particles and spatial grids inspired
by MPM to model deformable object dynamics. In this,
particles capture the object geometry while the spatial grid



Method Metric Rope Paper Plush Toy Duster Flag Teddy Toy
Spring-Mass [30] 44420 2.34+2.0 32408 3.842.0 5.742.5 5.843.4
MPM [62] 7.3+2.5 15.544.2 74418 6.0+2.6 23.147.0 -
GBND [82] MDE | 5.54+1.7 3.0+1.4 77426 51422 30.946.2 1.5+0.4
PGND [81] 3.3+1.8 2.140.5 4.04+1.3 3.8+0.1 3.241.4 1.6+1.3
Ours 2.6+1.31 17107 2.710.4 29118 2.8+1.2 1.3+0.3
Spring-Mass [30] 0.04540.024 0.017+0.012 0.0294.0.007 0.04740.025 0.0914+0.047 0.051+0.030
MPM [62 0.061+0.024 0.148+0.065 0.071+0.017 0.052+0.017 0.236+0.104 -
GBND [82] CD | 0.066+0.024 0.050+0.017 0.06540.018 0.063+0.028 0.49110.130 0.02710.003
PGND [81] 0.027+0.014 0.022+0.009 0.032+0.008 0.040+0.001 0.043+0.024 0.016+0.010
Ours 0.023+10.013 0.013410.006 0.026+0.003 0.038+0.025 0.043410.022 0.013+10.002
Spring-Mass [30] 0.02410.013 0.01810.012 0.01540.004 0.01940.012 0.049+0.026 0.02940.018
MPM [62] 0.039+0.016 0.114+0.055 0.039+0.009 0.028+0.012 0.194+0.078 -
GBND [82] EMD | 0.030+0.013 0.021+0.009 0.031+0.011 0.028 £0.014 0.24510.063 0.008+0.002
PGND [81] 0.014+0.006 0.015+0.005 0.016+0.004 0.016+0.004 0.023+0.013 0.008-0.006
Ours 0.012+0.006 0.014+0.007 0.014+0.002 0.014+0.011 0.02210.012 0.006+0.001

TABLE I. Tracking accuracy across diverse objects. Physics-Guided Residual Dynamics achieves the lowest error across all objects and
metrics, outperforming both physics-based methods and learning-based approaches.

Method Metric Rope Paper Plush Toy Duster Flag Teddy Toy
Spring-Mass [30] 0.317+0.151 0.68210.147 0.530+0.087 0.666+0.082 0.460+0.195 0.54310.199
MPM [62] 0.24440.145 0.4514-0.094 0.52240.088 0.59240.087 0.37840.112 -
GBND |82 J-Score / ToU 1 0.053+0.055 0.557+0.140 0.370+0.149 0.513+0.104 0.508+0.142 0.752+0.066
PGND [81 0.318+0.213 0.708+0.090 0.586+0.093 0.669+0.046 0.547+0.166 0.713+0.102
Ours 0-395j:0.169 0.7533:0.032 0.621i0.073 0-677i0.083 0-554i0.189 0.7823:0.114
Spring-Mass [30 0.659+0.160 0.47140.261 0.576+0.112 0.53240.097 0.208+0.181 0.473+0.272
MPM [62! 0.49240.245 0.47310.082 0.513+0.086 0.500+0.108 0.249+0.097 -
GBND (82 F-Score 1 0.19510.191 0.49510.135 0.35940.115 0.41140.100 0.25440.204 0.77140.096
PGND [81] 0.587+0.296 0.53940.165 0.553+0.111 0.52940.097 0.26540.198 0.72710.154
Ours 0-738i0,185 0-591i0,176 0.630i0‘107 0'551i0.102 0,268i0.214 0.803i0.175
Spring-Mass [30! 0.026+0.009 0.056+0.022 0.059+0.020 0.070+0.019 0.099+0.030 0.036+0.017
MPM [62] 0.038+0.014 0.065+0.014 0.077+0.017 0.068+0.017 0.091+0.025 -
GBND [82] LPIPS | 0.0524+0.017 0.057+0.013 0.105+0.020 0.064+0.013 0.088+0.013 0.02240.005
PGND [31] 0.026+0.013 0.05240.011 0.065+0.018 0.066+0.009 0.089+0.019 0.020+0.008
Ours 0.02310.011 0.049+10.014 0.054+0.021 0.059+0.019 0.085+0.029 0.017+0.009

TABLE II. Video prediction with 3DGS. PReD produces the most accurate visual predictions, demonstrating superior rendering quality.

discretizes the 3D domain to ensure spatial continuity and
improve learning efficiency.

E. Results

We evaluate PReD across two primary dimensions: dynam-
ics tracking accuracy and action-conditioned video prediction.

Dynamics and Tracking Accuracy. We first analyze our
model’s ability to track and simulate object states over time,
with results summarized in Tab. [} PReD consistently achieves
the lowest error across all objects and metrics, demonstrating
that learned residual corrections on physics backbones improve
accuracy beyond either pure physics or pure learning ap-
proaches. Among physics methods, the optimized spring-mass
model generally outperforms MPM, particularly for objects
with coherent structure like the rope and plush toy. Among
learning methods, PGND substantially outperforms GBND
across all objects, indicating that particle representations with
physics priors are more effective than graph neural approaches
for deformable object simulation.

Qualitatively, Fig. [5] reveals consistent patterns in how dif-
ferent approaches handle deformation. The optimized spring-
mass model captures overall motion but lacks the flexibility
to represent local variations in material properties, often ap-

pearing too stiff. MPM often struggles to maintain structural
cohesion, with object particles separating rather than behaving
as connected solids. Learning methods show complementary
strengths: PGND generates smooth predictions but accumu-
lates drift over time, while GBND struggles with graph
topology, producing unphysical artifacts. PReD leverages its
physics backbone for stability while using learned residuals
to correct local dynamics, maintaining both plausibility and
accuracy throughout the rollout.

The qualitative results reveal several interesting observations
that provides further insights into the limitations of different
approaches. MPM fails catastrophically for thin objects like
paper and flag, where object tear down and lose structure.
This happens because it relies on grid-based discretization,
which can cause material points to lose cohesion when par-
ticle distribution is non-uniform. The duster object, with its
rigid handle and soft feathers, reveals distinct failure modes
across all baselines: the optimized spring-mass model cannot
assign spatially varying stiffness and causes the rigid stem
to bend unnaturallyy, MPM fails to maintain volume with
material points collapsing toward the floor, GBND predicts
erroneous upward motion for all feather particles, and PGND
incorrectly compresses the rigid stem. Only PReD simulates
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Fig. 5: Qualitative comparison on diverse objects. The first column shows the states with gripper positions (red spheres). The second
column shows the GT object visualization after taking the action. PReD accurately captures deformations across all objects. For the duster,
only PReD maintains stem rigidity while allowing deformation for the feathers.

it correctly. For the teddy, under non-prehensile manipulation,
the object slips out of the optimized spring-mass model. MPM
cannot realistically simulate he constraints for non-prehensile
manipulation, thus we exclude it from this comparison. GBND
predicts minimal particle displacement, producing an overly
stiff response. PGND shows the gripper’s entire surface in
our visualization, but the gripper fingers themselves are not
visible because they have pushed into its interior. Only PReD
successfully captures the deformation, properly maintaining
contact while allowing realistic compression.

Action Conditioned Video Prediction. PReD translates supe-
rior dynamics accuracy to improved photorealistic rendering.
Across all objects, PReD consistently achieves the best J-Score
and F-Score metrics, demonstrating better spatial overlap and
foreground detection compared to both physics based and
learning based baselines. PReD also maintains the lowest
LPIPS scores across objects, indicating that the physics back-
bone enables the residual model to preserve objects visually
during rendering.

Interactive Photo-Realistic Simulation. PReD enables
photo-realistic interactive simulation by integrating the pre-
dicted dynamics with 3D Gaussian Splatting for rendering.
Users provide manipulation commands via keyboard input,
which drives the physics backbone, applies learned residual
corrections at each step, and renders the updated Gaussian
representations. This combination allows users to manipulate
objects with visual realism from the rendering. The results are
shown in the appendix.

F. Planning using PReD

We use PReD for planning using MPPI. As the objective, we
minimize the Chamfer Distance (CD) between the predicted
configuration and a pre-collected target configuration, both
represented as point clouds. Other implementation details are
provided in the appendix.

Standard Manipulation Tasks. We evaluate planning on the
rope with four start and goal configurations shown in Fig. [6]
(top): (1) lifting the rope up, (2) lowering it, (3) rotating it such
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Fig. 7: Cable Rerouting Execution. Comparison of PReD (top) and
the Spring-Mass backbone (bottom) for rope rerouting through a slot.
PReD navigates the rope through the opening while the Spring-Mass
backbone exhibits repeated collisions with the slot edges.

that one end remains roughly stationary while the other moves,
and (4) deforming it into a curved shape. We compare PReD
against the spring-mass backbone, providing both methods
with the same MPPI planning budget. We run 10 trials for each
task using the same start and end configurations. As shown in
Fig.[f] PReD’s CD decreases smoothly and saturates at a value
close to the target, whereas the spring-mass model converges
more slowly and somtimes fails to reach a comparable final
error. Additional planning results on the plush toy will be
provided in the appendix.

Cable Rerouting. We further test PReD on a more challenging
task: cable rerouting through a narrow slot. This requires the
robot to move the rope and thread it through the slot. We run
10 trials with different start and end configurations. The target
configuration is provided to the planner.

As demonstrated in Fig. [], PReD successfully navigates
the rope through the slot. The learned residuals compensate
for inaccuracies in the physics backbone, enabling precise
trajectory execution that avoids collisions with the edges. In
contrast, the spring-mass backbone struggles with these fine
dynamics. Small errors cause the rope to collide with the
edges, forcing the planner to retry the motion multiple times
before completing the task.

Quantitatively, Fig. [§] shows the distributions of start and
end configurations overlaid (left) and comparisons of chamfer
distances (right). PReD achieves significantly lower CD than

—Spring-Mass

—Ours

Chamfer Distance
<
o

N Planning Steps
Fig. 8: Cable rerouting through narrow slot. Left: distribution of
start and end configurations. Right: Chamfer Distance during MPPI
planning steps. PReD achieves lower distance than the spring-mass
baseline, successfully threading the rope through the slot in § out of
10 trials compared to 2 out of 10 for the baseline.

the optimized spring-mass. We also evaluate success rates for
this task. A trial is considered successful if the rope passes
entirely through the slot and the gripper remains below the
slot height in the final configuration. Under this criterion,
PReD succeeds in 8/10 trials, whereas the spring-mass model
succeeds in only 2/10 trials. These results demonstrate that the
improved model enables reliable execution of tasks that would
otherwise be infeasible.

V. CONCLUSIONS

We presented PReD, a hybrid simulation framework that
bridges physics-based and learning-based approaches for de-
formable object simulation. By combining an optimized
spring-mass backbone with learned velocity residuals, PReD
achieved superior accuracy while maintaining physical plausi-
bility. Our velocity-based residuals, combined with a sliding-
window transformer for temporal aggregation, yielded stable
predictions, avoiding the instability issues plaguing naive
residual learning. Extensive experiments across real-world
objects demonstrated that PReD consistently outperformed
both physics-based methods and SOTA learning-based ap-
proaches in tracking. PReD handled challenging scenarios
involving heterogeneous materials, volumetric deformations,
and contact-rich interactions where baselines failed. Beyond
tracking, we demonstrated applications in action-conditioned
video prediction and MPC. Rerouting experiments highlighted
that improved dynamics translated to higher success, with
physics-based simulation alone proving insufficient.
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Appendix

We structure the supplement into the following sections:

[A] Data collection and processing pipeline for obtaining con-
sistent particle trajectories from multi-view RGBD obser-
vations.

Interactive photorealistic simulation results combining
PReD with 3D Gaussian Splatting for real-time rendering.

Planning experiments on plush toy manipulation demon-
strating PReD’s effectiveness on volumetric objects with
flexible limbs.

Comparison to PhysTwin on heterogeneous objects, high-
lighting limitations of parameter optimization versus
learned residual corrections.

[E] Network architecture details and hyperparameter specifi-
cations for the encoder, decoder, and temporal aggregator.

[B Ablation study on decoder architecture, isolating the con-
tribution of the NeRF-style decoder to tracking accuracy.

A. DATA COLLECTION AND PROCESSING

We mount four Intel RealSense D455 cameras around the
workspace to capture synchronized RGBD observations at 30
Hz. The cameras are calibrated to a shared world coordinate
frame using a checkerboard calibration procedure, enabling the
fusion of observations across views. For each camera view, we
apply Grounded SAM 2 to extract object masks. Using text
prompts containing object descriptions, it detects and segments
the object in the first frame of a sequence and propagates the
mask across subsequent frames. We employ CoTracker [31]]
as the tracking model due to its stable tracking performance.
It predicts a set of 2D trajectories, initialized from uniformly
sampled grid locations within the first-frame object mask. For
each pixel in the segmented region at time ¢, we compute its
2D displacement to time ¢ + 1 from the predicted trajectories,
and convert it to a 2D velocity by dividing by the time step.

For each camera view, we lift the 2D pixel velocities to
3D using the corresponding depth measurements. Specifically,
for a pixel at position (u,v) with depth d and 2D velocity
(v, vy), we compute the 3D velocity by back-projecting
both the current and next pixel positions to 3D coordinates
using camera intrinsics, then computing the difference. This
yields per-pixel 3D velocities in the camera frame, which we
transform to the world frame using the calibration parameters.
We aggregate velocities across all camera views by averaging
the 3D velocity estimates for overlapping spatial regions,
thereby improving robustness to noise and partial observations
from individual views.

Given the 3D point cloud with per-point velocities at each
timestep, we extract temporally consistent particle trajectories
using an iterative rollout procedure. Starting from frame 0,
we initialize particles at the point cloud positions {z9}. For
each subsequent timestep ¢, we propagate particles forward
using their current velocities: z/™' = zf 4+ o} - At. To
update velocities at the new positions, we perform k-nearest

Fig. 9: Interactive rope manipulation with PReD rendered
using 3DGS. The visualization overlays three timesteps, with later
configurations in lighter opacity. As PReD predicts the dynamics, the
3D Gaussians attached to the particles are updated to render photo-
realistic images that maintain visual consistency with the observed
appearance while accurately reflecting the predicted deformations.

neighbor search (with k£ = 5) between the propagated particle
positions and the observed point cloud at time ¢ 4+ 1. Each
particle’s velocity is updated to the mean velocity of its k
nearest neighbors in the observed cloud. This iterative process
maintains correspondence across frames while being robust
to tracking noise, yielding persistent point tracks suitable for
training our dynamics model. The entire processing pipeline
runs at approximately 2 Hz for sequences with 1000 particles.

B. INTERACTIVE PHOTO-REALISTIC SIMULATION

Fig. [9] demonstrates the real-time interactive manipulation
capability of PReD. By integrating accurate dynamics pre-
diction with photorealistic rendering through 3D Gaussian
Splatting, users can interactively manipulate objects while ob-
serving visually realistic deformations in real time. This differs
from traditional simulation interfaces that rely on simplified
geometric representations or offline rendering pipelines. The
photorealistic feedback allows users to immediately assess
both the geometric accuracy and visual plausibility of pre-
dicted deformations, making it valuable for scenarios where
appearance matters alongside physical correctness, such as
training data generation for vision-based manipulation.

C. PLANNING ON PLUSH Toy

We extend our planning experiments to the plush toy, a
volumetric object with long, flexible limbs. The plush toy
requires accurate prediction of both volumetric deformation
and limb dynamics, testing the framework’s ability to handle
three-dimensional objects. Similar to rope, we design four
manipulation objectives with varying complexity, as visualized
in Fig. (top): (1) lifting the object, (2) lowering it, (3)
rotating it, and (4) bending it into a curved configuration.
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Fig. 10: Planning results on plush toy manipulation tasks. Top row displays the initial and target configurations for four manipulation
objectives. Bottom row plots the Chamfer Distance evolution throughout MPPI planning. PReD (green) consistently achieves superior

convergence compared to the tuned spring-mass baseline (red).

Following the same experimental setup, we conduct 10 trials
per objective with identical initial and target states, allocating
equal computational budget to both PReD and the spring-mass
baseline. The results in Fig. [[0]demonstrate that PReD exhibits
consistent convergence behavior, reaching target configura-
tions with reasonable residual error. The spring-mass baseline
shows slower error reduction and occasionally plateaus at
suboptimal solutions, particularly for tasks involving complex
limb deformation, where the learned residuals provide crucial
corrections to the physics backbone predictions.

D. COMPARISON TO PHYSTWIN

> 1

Fig. 11: PhysTwin execution on duster. Time progresses from left
to right. The duster initially maintains its shape, but the rigid stem
begins to bend unnaturally at intermediate time steps and completely
collapses by the final frame. This demonstrates that spatially varying
stiffness parameters recovered through first-order optimization fail to
maintain the structural integrity of heterogeneous objects.

PhysTwin [30] represents another approach to modeling
deformable objects using spring-mass representations. Similar
to PReD, it employs a spring-mass simulator as its physical
backbone. However, it attempts to recover spatially varying
material parameters through first-order gradient-based opti-
mization, with a differentiable simulator. While this strategy
can identify heterogeneous material properties in principle, we
find that it struggles with objects exhibiting extreme variations
in properties, such as our duster which has a rigid stem and
highly deformable feathers.

We evaluate PhysTwin on the duster object to assess its
ability to handle heterogeneous materials. The execution re-
sults are shown in Fig. [TT] As time progresses from left to
right in the figure, the simulation exhibits catastrophic failure.
In the leftmost frame, the duster appears correctly initialized.
However, by the middle frame, the rigid stem begins to bend
unnaturally at the junction between the stem and feathers. By
the final frame, the rigid stem completely collapses, with the
entire structure folding in on itself. This failure mode reveals
limitation of relying solely on first-order optimization to infer
spatially varying parameters.

In contrast, our approach as discussed in Sec. suc-
cessfully models the duster by combining a tuned spring-
mass simulator with learned residual corrections. Rather than
attempting to capture all material heterogeneity through pa-
rameter optimization alone, our residual network learns to
compensate for discrepancies between the physics model and
reality.

E. NETWORK ARCHITECTURE DETAILS

Our network network consists of three primary components:
an encoder, a decoder, and a temporal aggregator. The hyper-
parameter values for each component are provided in Table [[TI}
The encoder uses a Point Transformer V3 (PTv3) [72] ar-
chitecture to extract per-particle features through patch-based
self-attention, where the feature dimension determines the size
of the latent representation. The input channels correspond
to the concatenated position and velocity information from
the current state, history timesteps, and the physics simulator
predictions. The decoder employs a conditional NeRF-style
MLP to map spatial locations to residual velocities, where
hidden layers refers to the number of fully connected layers,
hidden dimension specifies the width of each layer, and
output channels indicates the dimensionality of the predicted
residual velocity (3 for xyz components). The decoder takes
as input the per-particle features from the encoder, concate-
nated with Fourier positional encodings of particle positions.
The temporal aggregator employs a transformer encoder to
refine predictions using temporal context. Here, the embedding
dimension defines the size of the latent space for temporal



features, attention heads specifies the number of parallel
attention mechanisms, transformer layers indicates the depth of
the transformer stack, and feedforward dimension determines
the width of the intermediate feedforward network within
each transformer layer. Finally, the gating scale controls the
magnitude of temporal corrections applied to the base velocity
predictions, preventing large adjustments that could destabilize
the simulation.

Parameter Value

Encoder (PTv3)

Feature dimension 64
Input channels 18
Decoder

Hidden layers 2

Hidden dimension 64
Output channels 3

Temporal Aggregator

Embedding dimension (d) 64
Attention heads (H) 4

Transformer layers (L) 2

Feedforward dimension (dgr) 128
Gating scale 0.1

TABLE III. Network architecture hyperparameters.

F. ABLATION STUDY: DECODER ARCHITECTURE

In Sec. [[II-C] we describe the use of a NeRF-style decoder
to produce per-particle residual velocities from the PTV3
features. We empirically found that including this decoder
improves performance compared with directly using PTv3
outputs as velocity estimates. To isolate the decoder’s con-
tribution, we compare two architectural variants on the rope
object: (1) PTv3 direct, where the encoder features are
directly projected to velocity corrections without the NeRF-
style decoder, and (2) PReD (full), which is our model. Both
variants use the same encoder and temporal aggregator.

The results demonstrate that the decoder improves tracking
accuracy. Without the decoder, the model achieves 2.8 cm
MDE, 0.026 CD, and 0.13 EMD on rope. In contrast, the
full architecture with the decoder achieves 2.6 cm MDE,
0.023 CD, and 0.012 EMD. These results confirm that the
positional encoding and MLP decoder effectively refine the
spatially varying residual corrections, particularly improving
the distributional similarity measured by EMD.
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